diesel multifunctional additive series RHC-9300

a new generation of multifunctional additives

additives solutions to boost the world of tomorrow

diesel multifunctional additives series RHC-9300

RHC-9300 Diesel Additive Series is used to improve the quality and performances of diesel fuel to serve pressing needs from consumers.

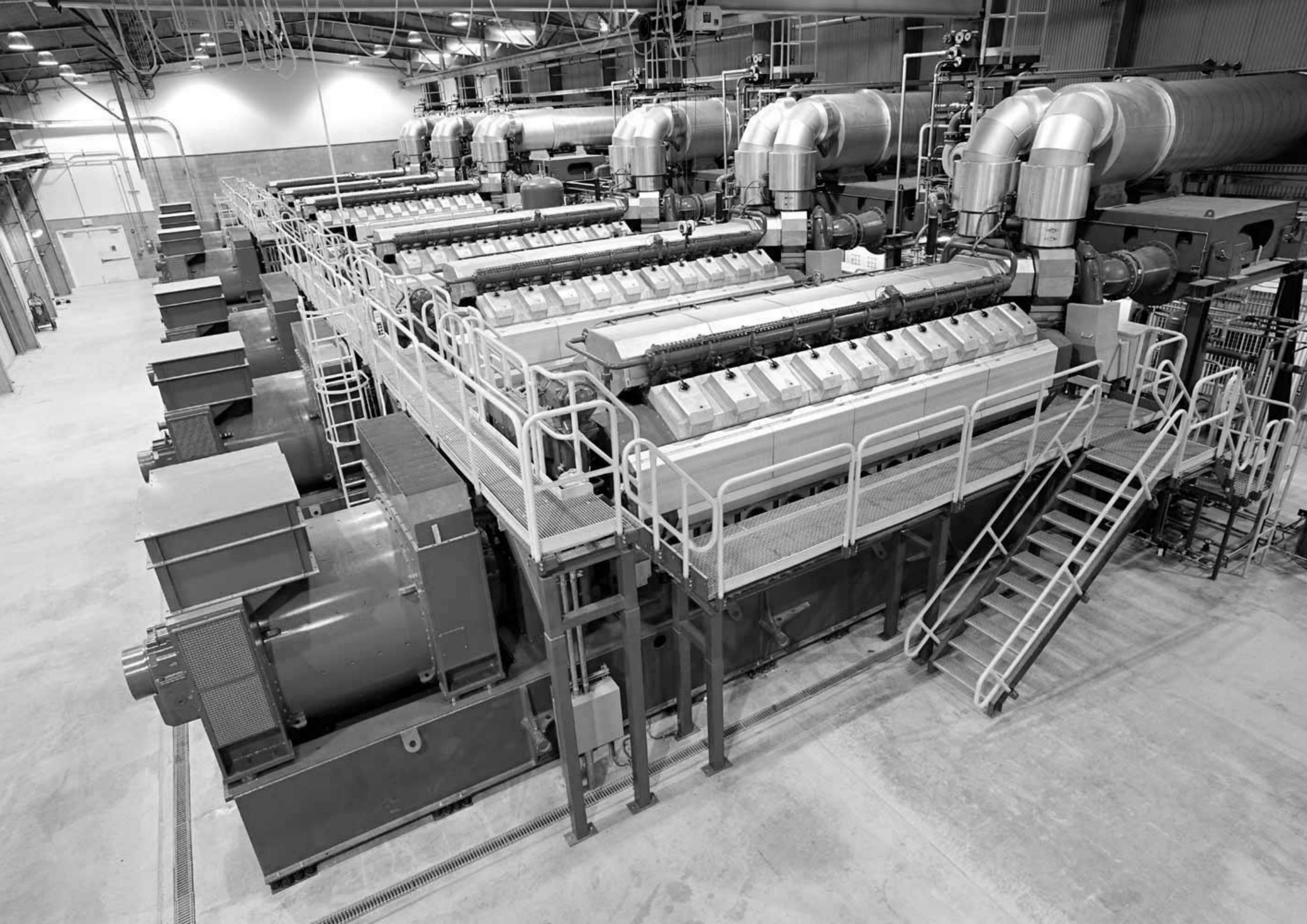
RHC-9300 Diesel Additive Series is able to enhance specific attributes of diesel fuel and has been developed to:

- improve combustion rates
- reduce fuel consumption
- increase Cetane Number
- increase lubricity index
- reduce emissions
- keep the injection system efficiency
- protect motors against corrosion
- prevent fouling deposit formation

efficiency is the key to cheaper energy production

technical overview

RHC-9300 Diesel Additive Series is a poly functional additive, homogeneous and miscible in hydrocarbons, designed with a special formulation expressly studied to improve the performance of diesel engines used for power generators, trucks and cars.


RHC-9300 Diesel Additive Series enhance engine performance with direct effect on fuel combustion efficiency with immediate increase of power production, decrease of fuel consumption and increase of lubricity index.

technical overview

These effect are measurable directly with control of engine parameters. The use of **RHC-9300 Diesel Additive Series** directly contribute to operative and maintenance costs reduction.

RHC-9300 Diesel Additive Seriesprovide substantial noxious emissions decrease. This is a significant contribution to environment protection.

Aspect: brown liquid

Density at 20C°: 0,9 - 1,0

Miscibility: completely miscible

Freezing Point: approximately - 10 °C

Flash Point: 70 °C

test results case 1

Test on stand – complying with COA: PSL 11-45-13 Nr 76

Master: The National Institute of Thermic Engines

Engine: D121-050 diesel tractor U650

Fuel: diesel CN 51

Test Performed @ 2600 rpm / P= 68 HP

	Dosage	Noxious emission						
	ppm	%		ppm		Unit Bosch		
	RHC-9600	CO ₂	CO	CH	NOx	Opacity (smoke)		
Blank	_	8,4	0,15	22	668	3,8		
With RHC-9600	20	7,9	0,13	19	565	3,4		

Noxious decreasing vs. additive

Engine Load %	0	60,3	100	Engine Load %	0	60,3	100	
	CO decreasing %				NOx decreasing %			
With RHC-9300	33,3	60	13,3	With RHC-9300	3,7	11,8	15,4	
	CO decreasing %				NOx decreasing %			
With RHC-9300	13,6	36,8	13,6	With RHC-9300	66,7	17,6	10,5	

Conclusions:

Fuel Saving ≈ 5-10 %
Significant Noxious Emission reduction

test results case 2

Al Dhafrat Power station

• Engine Type & N°: Marine 8 cylinder year 1971 - N° 2

Production Capacity: about 1 MWh

Fuel storage tank: day tank

Volume of tank: 1.875 liters

Dosing rate: 1000 ppmv

During the test the following parameters have been collected:

kWh: power production

FRM: liters of fuel (diesel)

SFC: kWh/liter (power produced per liter of fuel)

· Load: electrical charge

Test data & Results:

- Duration: 2 days
- No anomaly or failure on engine during operation
- Decrease of 3-4 °C of exhaust gases temperature during normal operation and during increase of LOAD
- Production increase (average): from 3,0 kWh/liter up to 3,3 kWh/liter (up to +10%)

improved combustion means less emission and less maintenance costs

test results case 3

Hij Mahoot Power station

•Engine Type & N°: Mirless 8 cylinder year 1975 - N° 6

Production Capacity: about 3,5 MWh

Fuel storage tank: day tankVolume of tank: 4.800 liters

Dosing rate: 1000 ppmv

During the test the following parameters have been collected:

kWh: power production

FRM: liters of fuel (diesel)

SFC: kWh/liter (power produced per liter of fuel)

LOAD: electrical charge

Test data & Results:

Duration: 7 days

- No anomaly or failure on engine during operation
- Production increase (average): from 3,5 kWh/liter up to 4,5 kWh/liter (up to +25%)

Mandressi Group

St. Theaterplatz, 5
9020 Klagenfurt - AUSTRIA
Telephone: +43 463 502788
e-mail: info@rheochemie.com